Isolation of MYADM, a novel hematopoietic-associated marker gene expressed in multipotent progenitor cells and up-regulated during myeloid differentiation.

نویسندگان

  • M Pettersson
  • K Dannaeus
  • K Nilsson
  • J I Jönsson
چکیده

A large number of hematopoietic cytokines and their receptors as well as transcription factors have been shown to be involved in maturation of blood cells. However, many of the genes important for the differentiation of multipotent stem cells to specific cellular lineages are still unknown. To identify novel genes involved in lineage selection of myeloid cells, we have applied differential display analysis during commitment toward granulocytes and macrophages of an IL-3-dependent multipotent progenitor cell line, FDCP-mix. One regulated cDNA represented a novel gene with restricted expression pattern within the hematopoietic system and was strongly up-regulated when FDCP-mix cells differentiated in GM-CSF, G-CSF, and M-CSF. The expression appears to be differentiation stage-specific in myeloid cells and is absent in B and T lymphocytes. Thus we found expression in normal mouse bone marrow enriched for stem cells and multipotent progenitors (c-kit+Sca-1+Lin- cells). When these cells were induced to differentiate toward myeloid cells, MYADM was up-regulated. In contrast, during conditions known to favor the development of B cell progenitors, the gene was down-regulated. The gene, termed MYADM for myeloid-associated differentiation marker gene, shows 100% identity to expressed sequence tags from early mouse embryonic development as well as from the mouse lung and from activated mouse macrophages. The predicted 32-kDa MYADM protein contains multiple hydrophobic putative transmembrane segments and has several potential consensus sites for phosphorylation. In view of its expression pattern, MYADM could serve as a new marker gene for hematopoietic differentiation. Although the function is unknown, antisense oligonucleotides were able to inhibit colony formation of c-kit+ Lin- bone marrow cells, suggesting an important role for MYADM in myeloid differentiation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptome-wide Profiling and Posttranscriptional Analysis of Hematopoietic Stem/Progenitor Cell Differentiation toward Myeloid Commitment

Hematopoietic stem cells possess lifelong self-renewal activity and generate multipotent progenitors that differentiate into lineage-committed and subsequently mature cells. We present a comparative transcriptome analysis of ex vivo isolated mouse multipotent hematopoietic stem/progenitor cells (Lin(neg)SCA-1(+)c-KIT(+)) and myeloid committed precursors (Lin(neg)SCA-1(neg)c-KIT(+)). Our data di...

متن کامل

Heparan sulfate proteoglycan expression is induced during early erythroid differentiation of multipotent hematopoietic stem cells.

Heparan sulfate (HS) proteoglycans of bone marrow (BM) stromal cells and their extracellular matrix are important components of the microenvironment of hematopoietic tissues and are involved in the interaction of hematopoietic stem and stromal cells. Although previous studies have emphasized the role of HS proteoglycan synthesis by BM stromal cells, we have recently shown that the human hematop...

متن کامل

A review of Biology and clinical use of Mesenchymal stem cell: an immune -modulator progenitor cell

Human mesenchymal stem cells (hMSCs), which also called mesenchymal stromal cells, are multipotent stem cell. Human MSCs typically are positive for the surface markers CD44, CD73, CD90, CD105, CD106, and also negative for hematopoietic markers CD34 and CD45.These cells can be isolated from postnatal bone marrow, adipose tissue, placenta, and scalp tissue, as well as from various fetal tissues. ...

متن کامل

Gene expression analysis of purified hematopoietic stem cells and committed progenitors.

Lifelong self-renewal is a unique property of somatic stem cells. Recently, several primitive multipotent yet committed (non-self-renewing) hematopoietic progenitor populations were identified in mouse bone marrow. We have characterized the expression of 1200 selected mouse genes using the Atlas cDNA array in highly purified hematopoietic stem cells (HSCs) and 6 closely related progenitor popul...

متن کامل

CD137 ligand reverse signaling skews hematopoiesis towards myelopoiesis during aging

CD137 is a costimulatory molecule expressed on activated T cells. Its ligand, CD137L, is expressed on the surface of hematopoietic progenitor cells, and upon binding to CD137 induces reverse signaling into hematopoietic progenitor cells promoting their activation, proliferation and myeloid differentiation. Since aging is associated with an increasing number of myeloid cells we investigated the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of leukocyte biology

دوره 67 3  شماره 

صفحات  -

تاریخ انتشار 2000